Parkinson's disease: symptoms reversed by increasing levels of alpha-synuclein


Researchers at Whitehead Institute, in collaboration with colleagues at several research centers, including the University of Missouri's School of Biological Sciences, have identified a key biological pathway that, when obstructed, causes Parkinson's symptoms. Even more importantly, they have figured out how to repair that pathway and restore normal neurological function in certain animal models.

" For the first time we've been able to repair dopaminergic neurons, the specific cells that are damaged in Parkinson's disease," says Susan Lindquist, at Whitehead Institute and Howard Hughes Medical Institute, and senior author on the paper that is published in Science.

In 2003, researchers in the Lindquist lab described using yeast cells as "living test tubes" in which they could study Parkinson's. A paper published in Science reported that when a Parkinson's-related protein called alpha-synuclein was over-expressed in these cells, clumps of misshapen proteins gathered near the membrane, and in many cases the cells either became sick or died.

Aaron Gitler and Anil Cashikar, researchers in the Lindquist lab, decided to follow up on these results by asking a simple question: Is it possible to rescue these cells when an over-expression of alpha-synuclein would normally makes them sick ?

They began with an array of yeast cells in which each cell over-expressed one particular gene. This array, prepared by researchers at the Harvard Institute of Proteomics, covers the entire yeast genome. All cells were also infected with alpha-synuclein. They reasoned that if they identified genes whose over-expression rescued a cell, that would tell them something about how alpha-synuclein made the cell sick in the first place.

Most of the proteins that they identified pointed to a pathway that involves two cellular organelles, the endoplasmic reticulum and the Golgi. The endoplasmic reticulum is the cell's protein factory, where proteins assume their requisite shapes. Once a protein has properly folded, it is trafficked over to the Golgi, where it is fine-tuned and further prepared for its designated task.

Working with Antony Cooper from the University of Missouri, Kansas City, Lindquist's team demonstrated that when alpha-synuclein becomes mutated and clumps at the cell surface, it manages to drag away a protein that helps transport between the endoplasmic reticulum and the Golgi. Proteins are blocked from navigating this crucial route, and the cell dies.

This isn't just a general toxic effect caused by any misfolded protein. It is specific to alpha-synuclein, the protein associated with Parkinson's disease.

" All this was done in yeast, " says Gitler. " Our next goal was to find out what this told us about actual neurons."

If mutations of alpha-synuclein dragged the endoplasmic reticulum /Golgi transport protein away from doing its job, as the yeast research indicated, then cell death might be averted simply by increasing the levels of this transport protein. Working with colleagues at University of Pennsylvania, University of Alabama, and Purdue University, the consortium tested this hypothesis in the fruit fly, C. elegans worm, and in neurons culled from rats, all of which had alpha-synuclein-induced Parkinson's symptoms. In every case, symptoms were reversed by increasing levels of this transport protein.

" We tried this a number of different ways, from creating transgenic animals that naturally over-expressed this protein, to injecting a copy of the gene for this transport protein into the neurons through a gene-therapy technique," says Gitler. " In all cases the results were the same. Cell death ceased, and the neurons were restored to normal health."

" Protein folding problems are universal, so we hoped we could use these simple model organisms to study something as deeply complex as neurodegenerative disease," says Lindquist. " Most people thought we were crazy. But we now not only have made progress in understanding this dreadful disease, but we have new platform for screening pharmaceuticals."

These findings also help explain why biopsies from Parkinson's patients indicate stress in the endoplasmic reticulum of dopaminergic neurons.

Source: Whitehead Institute for Biomedical Research, 2006


XagenaMedicine2006



Link: Xapedia - Medical Encyclopedia