Cancer-associated muscle wasting and muscular dystrophy share dystrophin dysfunction


A study provides important insight into the mechanisms of a muscle wasting disorder that interferes with treatment for cancer and has a negative impact on patient survival.

The research, published in the Cancer Cell, describes an unexpected link between muscular dystrophy and muscle wasting associated with cancer, and suggests a potential strategy for development of therapies to combat cancer-associated muscle wasting.

Muscle wasting, or cachexia, is a severe and debilitating consequence of cancer that occurs in a majority of patients and is thought to contribute to up to one third of all cancer deaths.

The molecular mechanisms underlying skeletal muscle cachexia are not well understood, but it is highly likely that effective cachexia therapy might improve patients' quality of life, ability to receive treatment, and survival.

To gain insight into the mechanisms underlying muscle wasting in cancer patients, Denis C. Guttridge at The Ohio State University and colleagues analyzed cachectic muscles in tumor-bearing patients and mice.

The researchers found that wasting associated with cancer in mice is linked to a dysfunctional dystrophin glycoprotein complex ( DGC ), a structure in the muscle cell membrane that is mutated in the muscle wasting disease muscular dystrophy. Progression of cancer is associated with reduction of dystrophin and abnormal regulation of the DGC proteins. Mice lacking dystrophin exhibit enhanced tumor-induced wasting, while transgenic animals expressing dystrophin were spared from the disease. Significantly, cachectic patients with gastrointestinal cancers had dramatic reductions in dystrophin when compared to weight-stable healthy individuals.

Although cancer cachexia and muscular dystrophy both involve muscle loss, the mechanisms underlying these diseases had been thought to be widely divergent. However, the results of this study point to deregulated DGC as one potentially critical shared characteristic. " Collectively, evidence in this study suggests that DGC dysfunction may be an early event in some cancers contributing to cachexia. Since effective therapies are currently lacking, results imply that approaches targeted to restoring DGC function could also be considered as an option in designing anticancer cachexia therapies," concludes Guttridge.

Source: Cancer Cell, 2005


XagenaMedicine2005